2017医疗大数据与人工智能报告

  • A+
所属分类:健康智库

来源:刘宗宇 / 动脉网 原文连接

研究背景:近年来,人工智能技术得到长足进步,逐步成为一项可应用和可普及的基础技术。在医疗健康领域,人工智能在疾病筛查、辅助诊疗、药物研发等领域取得了不俗的成绩。作为国内最早涉足医疗人工智能报道的媒体,动脉网从2014年开始关注这个产业,已采访业内人士超1000人,原创发布超过550篇关于人工智能和医疗大数据的文章。

2017 年7 月20 日,国务院发布了《新一代人工智能发展规划》,这是在国家层面首次对一项技术内容进行全盘布局。借此契机,我们决定对人工智能与医疗大数据在医疗健康领域的应用进行全面梳理,输出我们浸淫行业多年所得认知,希冀实现我们为行业鼓与呼的理想。

对象界定:本报告的研究对象为全球范围内医疗健康领域的人工智能企业,判断企业是否属于人工智能企业的标准为企业业务流程中是否使用到一种或多种人工智能算法。

数据来源:本报告信息基于于行业人士访谈、动脉网数据库、Crunchbase、学术文献以及相关产业报告。动脉网蛋壳研究院未对现有或提供给动脉网研究院的此信息做独立验证,且不就此类信息的准确性或完整性作任何明示或默示的陈述和保证。本报告中包含的分析和结论均基于上述信息。

研究方法:本次研究采用案头研究与田野调查同步进行的方法,以人工智能技术发展及实现形式为主线,探讨技术发展的外延产业发展,试图描绘当人工智能这一关键技术逐渐演进,经济运行模式发生改变,行业重新域定的过程。

主要研究成果:

人工智能已经经历两次低谷,正在走上第三波浪潮

算力算法齐备,人工智能 医疗等待医疗大数据引爆

医疗数据获得途径多样,有待国家出台法规规范数据使用

中国人工智能学术研究全球领先

人工智能人才供需严重不平衡

单个细分领域聚集效应明显

人工智能 医疗创业门槛升至百万

巨头插足,多领域协同发展趋势渐成

绘制人工智能 医疗技术成熟度曲线

image001.png

2017年人工智能 医疗技术成熟度曲线

注: 我们认为医疗影像在技术成熟度曲线上的位置应该在刚越过顶峰期的位置。而其他类型的人工智能 医疗企业,都还大部分处于技术萌芽之后的快速上升期。排名最后的疾病筛查和预测,因为难度最大,算法最复杂、需要数据最多,暂时还在学术机构的研究阶段。

以下是《2017医疗大数据与人工智能产业报告》精简版,包含报告的所有结构,在全文10万字的基础上进行缩减。

一、人工智能发展历程

>>>>

人工智能已经历两次低谷

image003.png

第一次人工智能浪潮,出现在1956~1974 年。其间,算法和方法论有了新的进展,特别是算法方面出现了很多世界级发明,其中包括一种称作增强学习的雏形(贝尔曼公式)。

第一次人工智能的冬天,出现在1974~1980 年。人们发现逻辑证明器、感知器和增强学习等,只能做很简单,领域很窄的任务,稍微超出范围就无法应对。

第二次人工智能的寒冬,系由1987 ~ 1993 年个人电(PC)出现“促成”的。计算机由此走入家庭,特别是费用远远低于专家系统所使用的Symbolics和Lisp等机器。于是,在美国,由于政府支持的经费数额开始下降,故又一次寒冬来临。虽然研究还在继续,但是人工智能已经很少被提及了。

21 世纪初,随着计算机周边的互联能力、大数据、计算性能、存储能力和传感器技术的大幅度进步,以及人工智能相关的图像识别、深度学习和神经网络算法等关键技术的突破,人工智能终于有了革命性发展。人工智能从过去的基于专家和人为设定规则中走出,开始从海量数据中自动寻找规则。

image005.png

>>>>

解放人类脑力的第四次工业革命

以人工智能为代表的智能互联技术被誉为是第四次工业革命的推动力。前三次革命主要解放了人类的体力,而这次革命,将要解放的是人类的脑力。

社会的生态构成,是以底层技术、在此基础上所形成的社会关系、协调社会运行的规则机制和法度组成的。而域,就是一个时期技术、方法、实践的总和。当域里的关键技术逐渐演进最终发生根本性改变的时候,旧域会跃迁到新域,经济运行模式会在此基础上达到新的稳定,这个过程被称为重新域定。

image007.png

人工智能产业链一般来说划分为三个层次,分别是底层的基础层,中间的技术层和上层的应用层。但是,数据是人工智能产业链中非常重要的一环。它原本属于基础层,因为其重要性,我们把它提出来,和基础层并列。

image009.png

人工智能在各行各业中的能力:一是高效率地辅助决策,二是对项目运营进行优化。

辅助决策。通过大数据收集,显著提高决策效率,并降低成本。全面的数据收集不会漏过蛛丝马迹,再用深度学习算法来洞察业务中的关键决策点,计算速度和准确性都要高于人类。

运营优化。通过图像、语音、物联网等各种传感器收集回来数据,对项目运营中的问题进行分析,并提出优化建议。

二、人工智能改变医疗未来

image011.png

医疗领域最突出的问题就是优质医疗资源不足,同时,医生对疾病的诊断准确度和效率还有非常大的提升空间。长期以来,大多数国家和地区,特别是进入老龄化社会之后,对医生的需求量有增无减。解决医生资源不足的问题,除了增加供给量,别无他法。但是医生培养需要周期,而且供给量也不能无限增加。

于是,人们开始寄希望于机器。因为一旦能够实现机器看病,供给量将会无限增加。所以,人工智能 医疗健康的结合,是人工智能诸多应用场景中最重要一个。

3.1.3 副本.jpg

三、算力算法齐备,人工智能 医疗等待医疗大数据引爆

算法、算力和数据,是人工智能快速发展的三个要素。

3.jpg

算力是人工智能的基础设施之一,目前每GFLOPS的算力成本已降至8 美分。

算法是人工智能发展的基础,算法框架中诸如Caffe、TensorFlow、Torch 等大多数已经实现了开源,成为大多数工程师的选择,对行业的加速发展和人才的培养起到了非常大的作用。

数据方面,人工智能系统必须通过大量的数据来“训练”自己,才能不断提升输出结果的质量。目前医疗数据还具有公开性不高,难以获得、清洗的特点。

>>>>

医疗人工智能学习数据三大获取途径

一是企业自有数据。通过大量的人力采集,再对数据进行结构化处理,形成人工智能的训练基础。大部分人工智能企业在进入这个领域之前,正是在各自领域采集到了相当多的行业数据,才考虑对数据资源进行利用,形成人工智能业务。

二是各国政府的公共数据。美国联邦政府在Data.gov 数据平台开放了来自多个领域的13 万个数据集的数据,包含医疗、商业、农业、教育等领域。我国和其他国家也陆续开放了部分领域的公共数据。

三是产业合作数据。人工智能创业公司通过和行业公司,以及产业链上游的数据公司建立合作获取数据,比如医疗方面和医院建立合作关系。IBM Watson 一开始就是通过和纪念斯隆凯特琳癌症中心合作获取病历、文献等数据。

四、医疗人工智能的核动力:医疗大数据

image017.png

医疗大数据是因健康活动而产生的数据,是有出生、免疫、体检、门诊、住院和其他活动所产生的数据。按照数据来源划分,可以将目前数据库分为三类,分别为电子健康档案数据库、电子病历数据库和全员人口个案数据库。

除了传统的以上三个来源之外,医疗大数据还包含通过“物联网”所收集的数据——医疗器械收集的健康数据,APP、远程监控、传感器提供的连续临床数据。

>>>>

医疗数据呈爆发式增长

 

在过去的十年里,随着电子病历的实施,数字化的实验室幻灯片,高分辨率的放射图像、视频,医疗保健数据量呈指数级增长,整个医疗行业的数据量令人难以置信。再加上制药企业和学术研究机构档案,以及数万亿的数据流从可穿戴式设备的传感器中得到。EMC和IDC发布的报告显示,2013年全球医疗保健数据量为153EB,预计年增长率为48%。这意味着到2020年,这个数字将达到2314EB。

image019.png

image020.png

>>>>

大数据成为国家战略,医疗进入大数据时代

健康医疗大数据是一种高附加值的信息资产,关乎国计民生,具有重大的战略性意义。目前,国家已陆续出台关于扶持医疗大数据发展的相关政策,初步做好顶层设计并构建出医疗大数据发展的宏伟蓝图。

image023.png

虽然个体健康医疗数据对于医疗技术革新的价值有限,但通过对海量、来源分散、格式多样的数据进行采集、存储、深度学习和开发,可以从中发现新知识、创造新价值、提升新能力,从而进一步反哺健康医疗服务产业。

五、我国人工智能发展现状

>>>>

我国人工智能学术研究世界领先

根据美国发布的《国家人工智能研究与发展策略规划》报告,从2013年到2015年,SCI 收录的人工智能方向论文,涉及“深度学习”的论文数量增长了约6倍。中国学者的论文发表数量从2014年开始超过美国,并大幅度领先于其他国家。

4.jpg

虽然中国学者人工智能论文SCI 发表数量有增加,但是影响力还没有得到相应的提升。在麦肯锡的《中国人工智能的未来之路》报告中显示,2015年中国学者发表的人工智能论文被引用量高达2124篇,远远超过美国的1116篇。但是去掉自我引用部分,美国学者的论文引用量将上升到第一。

5.jpg

>>>>

人工智能是国家大力推动技术

虽然在人工智能的基础技术上,中国和美国之间还有一定的差距,但是中国政府已经从系统布局,整体部署我国的人工智能发展规划。2017年7月20日,国务院发布了《新一代人工智能发展规划》,这是在国家层面首次对一项技术内容进行全盘布局。

7.jpg

>>>>

政策盲点

除了从国家层面推动人工智能的产业发展需要政策支持,人工智能在应用过程中所涉及到的法律法规问题也需要尽早规划和监管。特别是在监管严格的医疗行业中,人工智能的商业化应用,还有很多问题需要政策进行规范。

第一,人工智能的应用规范。医疗问题涉及到人的健康和生命,是一个复杂而谨慎的领域,任何问题都和患者的生命安全息息相关。所以,我们需要尽快在国家层面明确监管措施,用法规来监管人工智能在医疗上的应用范围是什么?监管范围是什么?风险的责任判定等等。

第二,数据的合理、合法应用。因为人工智能需要从过往数据中进行学习,才会使其拥有智能,并得到提高。所以,大量高质量的医疗数据是人工智能具有判断力的基础。

第三,产业政策扶持。目前,中国的高科技公司中,有超过半数的公司并没有将人工智能列入 战略计划之中。即使开始涉及人工智能,也可能在数据、人才、技术上还存在阻碍。如何引导数字医疗产业完成人工智能的变革,政府可以通过一些传统经济工具,帮助企业克服人工智能发展初期所面临的问题。

六、人工智能人才供需严重不平衡

领英发布《全球AI 领域人才报告》,中国人工智能领域专业技术人才总数超过5 万人,排名全球第七位,印度、英国、加拿大和澳大利亚分列2-5 位。而美国有超过85 万的AI 人才。

中国11 所高校和中科院4 所研究所(计算机所、声学所、软件所、自动化所),共15 家单位的AI 专家和硕博人才。47 名医疗人工智能创业公司的CTO 或者首席科学家,有30 名都在国外或者中国的香港、台湾进修过,占比63.8%,而与医学专业相关的人才仅有7 人,占比14.9%。美国毕业的学校多为麻省理工、卡内基梅隆、加州大学约翰霍金斯大学等高校。

image032.png

据行业内人士透露,现阶段不仅人工智能人才短缺,医疗人工智能人才更加短缺。该人士所在实验室中,前后两届毕业生中只有他一人从事医疗行业。该现象在高校中比较普遍,AI 人才从事医疗行业的大约只占十分之一。

  • HealthIT.CN小程序
  • 产学研医创新平台
  • weinxin
  • 健康数据
  • HealthIT公众号
  • weinxin
admin

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: